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Abstract
Objective  Despite widespread uses in MRI research, the relative accuracies of different motion artifact simulation approaches 
in reproducing artifacts and artifact-induced changes (AIC) of morphometric parameters in structural MRI remain largely 
unknown. We aim to evaluate the performances of four simulation approaches in reproducing artifacts and AIC of brain 
morphometric parameters.
Methods  Within-session repeated T1-weighted scans were acquired on ten volunteers with their heads remaining still or 
undergoing intentional motion monitored by fat navigators. Four simulation approaches were adopted, which differed in terms 
of whether channel-combined magnitude image or complex multi-channel k-space data were utilized, and whether motion 
effects were introduced by modifying k-space data value (MDV) or modifying k-space coordinates and data phase (MCP). 
By means of simulation, the dependence of morphometric parameter changes on motion pattern and severity was studied.
Results  Multi-channel k-space database simulation achieved higher artifact similarity and AIC consistency with measured 
motion scan images than magnitude image-based simulation. MDV- and MCP-based simulations achieved comparable results. 
From k-space database simulation employing MDV, the motion-induced biases in morphometric parameters were found to 
vary linearly with motion severity with motion pattern-dependent slopes.
Conclusions  Simulations based on multi-channel complex k-space data outperformed those based on channel-combined 
magnitude images in reproducing artifacts and AICs. Head motion caused imaging artifacts and systematic biases in 
morphometric parameters which can be equally reproduced by simulations using two different motion effect introduction 
strategies.
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Introduction

Motion artifact simulation has multiple applications in MRI 
research, including generation of motion-corrupted images 
for training artifact reduction networks [1–5], evaluation 
of motion correction performance [6, 7], and illustration 
of motion effects on brain morphometric parameters [8, 
9]. Despite its common use in MRI research, it remains 
unclear how well the motion effects in real images can 

be reproduced by artifact simulation. In cases with severe 
motion, Zahneisen et al. demonstrated that simulation based 
on artifact-free images acquired with prospective motion 
correction can reproduce artifacts that are visually similar to 
those in images without motion correction but with similar 
motion profiles [7]. However, the simulated motion severity 
was very high (rotational motion range > 10◦ ). Therefore, 
it remains unclear whether the similarity would remain for 
less severe motion commonly encountered in routine MRI 
studies.

Motion introduces systematic biases into brain 
morphometric parameters [9–16]. Different motion artifact 
distribution between study groups could confound the 
interpretation of neuroimaging findings, particularly in 
populations with varying degrees and patterns of motion, 
such as those with neurodevelopmental or neurodegenerative 
disorders [15]. However, the dependence of morphometric 
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parameter changes on motion pattern remains largely 
unexplored. Similarity between simulated and real images 
would allow us to use motion artifact simulation to estimate 
the motion effects on morphometric parameters so as to 
eliminate motion-induced biases in brain morphometric-
related studies. However, it is unclear whether the motion 
effects on morphometric parameters, such as cortical 
thickness and gray matter volume derived from real images, 
are the same as those derived from images simulated using 
the same motion profiles.

Multiple methods have been proposed for performing 
motion artifact simulation, including those utilizing 
channel-combined magnitude images [3–6, 8, 17] and 
those utilizing multi-channel complex k-space data [2, 7, 
18]. As complex k-space data are often not available and 
simulations using multi-channel complex k-space data are 
computationally much more expensive than those based on 
magnitude images, magnitude image-based approaches are 
preferred if they can be demonstrated to produce similar 
results. Furthermore, motion effects were introduced in these 
simulations either (1) by modifying k-space coordinates 
(for rotational motion) and data phase (for translational 
motion), and then obtaining the final image by inverse non-
uniform Fourier transform [7], or (2) by modifying k-space 
data value by non-uniform Fourier transform according to 
different head orientations and obtaining the final image 
by inverse Fourier transform [6]. It is unclear whether 
the different approaches can produce similar artifacts and 
image metrics. These two approaches will be referred to 
as MCP (modification of coordinate and phase) and MDV 
(modification of data value), respectively.

In this study, we aim to evaluate the accuracies of different 
simulation strategies in reproducing artifacts and artifact-
induced changes (AIC) of morphometric parameters in 
T1-weighted structural brain MRI images, and to determine 
the dependence of AIC on motion pattern and severity.

Methods

Data acquisition

Images were acquired on a 3T uMR890 MRI scanner (United 
Imaging, Shanghai, China) equipped with a 2-channel 
transmit coil and a 64-channel receive coil. The T1-weighted 
inversion-recovery gradient echo sequence was used with 
the following parameters: TR/TE/TI = 2400/2.3/1000 ms, 
flip angle = 8◦ , voxel size = 0.8 × 0.8 × 0.8 mm3, matrix 
size = 320 × 300 × 208, field of view (FOV) = 256 × 240 × 
166.4 mm3, 20% oversampling along the partition encoding 
(PAR) direction. No partial Fourier acceleration was 
performed along the phase encoding (PE) or PAR directions. 
The k-space was fully sampled in the central region with 

a size of 25 × 25, but was randomly undersampled with 
probabilities of 0.348 and 0.254 in the outer regions defined 
as (1) |kpe| ≤ 0.673kpe,max and | kpar| ≤ 0.806kpar,max , and (2) 
|kpe| > 0.673kpe,max or | kpar| > 0.806kpar,max , respectively, 
resulting in a total undersampling factor of 3.2 [19]. The 
sampling pattern is shown in Fig. S1.

The 3D fat navigator (FatNav) [20] was embedded into 
each TR to monitor head movements with the following 
sequence parameters: TR/TE = 4.7/2.3 ms, flip angle = 7◦ , 
voxel size = 4 × 4 × 4 mm3, matrix size = 56 × 56 × 56, 
FOV = 224 × 224 × 224 mm3, undersampling factor R = 4 
× 4 and partial Fourier factor = 0.8 along both PE and PAR 
directions. A FatNav image with fully sampled rectangular 
region around k-space center was acquired before the first 
TR for obtaining the calibration data for GRAPPA [21] 
reconstruction. The FOV center of FatNav coincided with 
that of the main image.

The study was approved by the Institutional Review 
Board at ShanghaiTech University. Ten healthy volunteers 
(aged 19–46 years, 6 males) were enrolled in this study after 
obtaining informed consent. All the subjects underwent two 
scans within the same imaging session, one in which they 
were instructed to remain as still as possible (referred to as 
“still scan”), and the other in which they were instructed 
to perform intentional movements (referred to as “motion 
scan”). Apart from the suggestion to move head every 30 s, 
no specific motion type or motion severity was instructed 
in order to encompass a wide range of motion scenarios. 
Among the ten subjects, two underwent the scanning session 
twice on two different days, resulting in a total of twelve 
paired images with and without motion.

Motion artifact simulation

To investigate whether simulations based on magnitude 
images or complex k-space data, and whether different 
motion introduction strategies, i.e., MCP and MDV, can 
produce results that are more similar to real motion artifacts, 
four different motion simulation approaches were adopted. 
Their differences are shown in Fig.  1. Either channel-
combined magnitude image (Approaches 1–2) or complex 
multi-channel k-space data (Approaches 3–4) of still scans 
were used. Approaches 1 and 3 adopt MDV according to 
different head orientations, place these motion-corrupted 
k-space data into the intended Cartesian coordinates, and 
obtain the final image using inverse fast Fourier transform 
(FFT) as shown in Fig. 1B. In contrast, Approaches 2 and 4 
adopt MCP by moving the measured k-space data into non-
Cartesian grid to account for motion effects, and obtain the 
final image using inverse non-uniform fast Fourier transform 
(NUFFT), as shown in Fig.  1C. We note that, despite 
being labeled as MCP, the interpolated k-space data at the 
Cartesian grid in Approaches 2 and 4, which are generated 
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during inverse NUFFT, are also different from the original 
data. However, the motion effects have been introduced in 
the MCP step before interpolation. The detailed steps for 
each approach are described as follows and shown in Fig. S2.

Approach 1: This approach adopts MDV based on 
magnitude images. It was developed in our earlier study [6], 
and includes the following steps: (1) the magnitude image 
is expanded by zero padding to account for oversampling 
along PAR direction such that its Fourier transform matches 
the sampled k-space positions. (2) The rotational motion 
parameters are applied to the Cartesian k-space coordinates 
k to obtain the real measured non-Cartesian k-space 
coordinates k′ by k� = Ak , where A is the rotation matrix 
that brings the moved head position back to the original 
orientation. Then the expanded image is transformed to 
obtain the k-space data S�(k�) at coordinates k′ through 3D 
NUFFT [22], where the apostrophe indicates modification 
by motion. Due to undersampling, motion parameters for 
unsampled k-space positions are assigned to be the same as 
those of the nearest sampled positions. (3) The k-space data 
at k′ are placed onto the predefined Cartesian coordinates 
k and the corresponding phase is adjusted according to 
S�(k) = S�(k�) ∙ eik∙Δr to account for the linear phase shift due 
to translational motion, where Δr is the translational motion 
parameter that brings the moved head back to its original 
position. (4) Apply inverse FFT (iFFT) of S�(k) followed 

by cropping the voxels added during step (1) to obtain the 
final image.

Approach 2: This approach adopts MCP based on 
magnitude images and includes the following steps: (1) 
expand the image matrix by zero padding. (2) The expanded 
image is transformed into k-space through 3D FFT. (3) 
Assign motion parameters to unsampled k-space positions 
using the same method as in Approach 1. Then, modify 
the k-space coordinates according to k� = A−1k , place the 
k-space data from step (2) onto the transformed coordinates 
k′ , and finally adjust the corresponding phase according to 
S�(k�) = S(k) ∙ eik�∙Δr . We note that the inverse matrix of A 
is used in coordinate transform in this approach, such that 
the directions of relative mismatch between k-space data and 
k-space coordinates remain the same between Approaches 
1 and 2. (4) Apply inverse NUFFT of S�(k�) followed by 
cropping the voxels added during step (1) to obtain the final 
image.

Approach 3: This approach adopts MDV based on multi-
channel complex k-space data and includes the following 
steps: (1) SPIRiT [23] reconstruction algorithm is employed 
to reconstruct the undersampled k-space data into multi-
channel image data. SPIRiT fills the unsampled k-space 
data along PE and PAR directions at each readout (RO) 
coordinate. The data are now in the image space along PE 
and PAR directions, and then the multi-channel image data 

Fig. 1   A Differences between 
four motion artifact simulation 
approaches. B Diagram of 
two motion effect introduction 
strategies. MDV modifies 
k-space data values of still scan 
according to different motion 
states by non-uniform fast 
Fourier transform (NUFFT), 
places the motion-corrupted 
data into Cartesian grid and 
obtains the image by inverse 
fast Fourier transform (FFT). 
MCP modifies k-space 
coordinates and data phases of 
still scan into non-Cartesian 
grid and obtains the image by 
inverse NUFFT. Different colors 
represent k-space lines acquired 
at different TR. Assuming 
that the motion parameters 
vary between TRs, the colored 
k-space lines all have different 
orientations. In each motion 
state, gray indicating unused 
data during that TR
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are obtained after iFFT along RO direction. (2)–(3) Follow 
the same steps as (2)–(3) in Approach 1 but deal with multi-
channel data. (4) Apply iFFT and coil combination by square 
root of the sum of squares (SOS) to obtain the final image.

Approach 4: This approach adopts MCP based on multi-
channel complex k-space data, which was first proposed 
by Zahneisen et al. [7], and includes the following steps: 
(1) modify the k-space coordinates and phase according 
to k� = A−1k and S�(k�) = S(k) ∙ eik�∙Δr . Different from 
Approaches 1–3, the motion parameters are only applied 
to the sampled k-space data and coordinates, thus avoiding 
the need for motion parameter interpolation. (2) Perform 
interpolation on k-space coordinates so that all the measured 
k-space lines have the same RO coordinates, which is 
accomplished by first performing iFFT along the k-space 
line, second adding linear phase shifts e−i�k∙x , where �k is 
the k-space coordinate shift caused by motion and x is the 
coordinate along the motion-modified RO direction, third 
performing FFT along the same direction. (3) Perform 
SPIRiT at each plane with the same RO coordinate to fill 
the unsampled k-space data. The SPIRiT step is similar to 
step (1) in Approach 3 but involves NUFFT since the PE 
and PAR coordinates are no longer on the Cartesian grid. 
(4) Perform iFFT along RO direction and coil combination 
by SOS to obtain the final image.

To determine the capability of our algorithms in 
reproducing motion artifacts and AICs of morphometric 
parameters, we used the motion profile from motion scan 
and the artifact-free image from still scan of the same subject 
to simulate the artifacts manifested on motion scan images. 
Simulation Approaches 1–4 with such a method for selecting 
motion profiles will be referred to as Simu 1–4. Since only 
motion scan images are usually available in clinical setting, 
one can also utilize the motion profile to simulate artifacts 
using an existing artifact-free image from a different subject 
to obtain the AIC. Therefore, we also used the motion profile 
and the artifact-free image from two different subjects to 
simulate the artifacts. Such simulations will be referred to as 
dSimu 1–4. Notably, the simulated AIC for Simu and dSimu 
were originated from the same motion profile, and differed 
in that the baseline and simulated images of dSimu came 
from a subject different from Simu.

To explore the relationship between AIC and motion 
severity, three representative subjects with distinct motion 
patterns were chosen to simulate motion artifacts and 
calculate AIC using Simu 3. The motion profiles are shown 
in Figs. 2, 3, and 4 and represent step-wise, random, and 
peak-wise motion patterns, respectively. For each motion 
type, the motion pattern was maintained, but the rotation and 
the translation amplitudes were scaled into eight different 
levels with motion scores of 1.8 mm, 2.9 mm, 3.9 mm, 5.0 
mm, 6.1 mm, 7.1 mm, 8.1 mm and 9.1 mm as shown in 
Figs. S3–S5.

The simulations were implemented in MATLAB R2021a 
(The MathWorks, Natick, MA, USA) and Approaches 1, 2, 
3, and 4 took an average of 6 min, 6 min, 25 h, and 13 h on a 
computer equipped with 3.3 GHz Intel Xeon W-2275 CPU, 
respectively.

Data processing and analysis

Image reconstruction

The T1-weighted images of still and motion scans were 
reconstructed using the same SPIRiT algorithm [23] 
as in Approaches 3 and 4, without applying the motion 
parameters. The FatNav images were reconstructed using 
GRAPPA [21] algorithm.

Motion parameters

The motion profile of each subject was obtained by 
registering the FatNav images to the reference FatNav image 
acquired at the 47th TR using the 3dvolreg tool in AFNI 
[24]. The 47th FatNav image was chosen as the reference 
since the k-space center of T1-weighted image was acquired 
during this repetition. Each motion profile contained a series 
of rotational and translational motion parameters around 
or along left–right (L–R), anterior–posterior (A–P) and 
superior–inferior (S–I) spatial directions.

To determine the estimated accuracy of FatNav motion 
detection, the time series of motion parameters was split 
into segments of slow drifting periods and then fitted with 
piecewise second-order polynomial. The residual variance 
of each segment after the fit was calculated and averaged to 
obtain the residual standard deviation (rSD) which served as 
an estimate of the random fluctuations of motion parameters 
[25].

The motion severity was quantified using motion 
score [25], which was calculated as a combination of 
translational ( M

T
 , unit: mm) and rotational motion 

ranges ( M
R
 , unit: radian) over the whole scan given by: 

motion score = M
T
+ 57.3mm ×M

R
 . The motion ranges 

were defined as the root sum square of the differences 
between the maximum and the minimum values of the rigid 
body motion parameters. The radius of 57.3 mm is chosen 
in Ref. [25] of Zong et al., such that the motion score can be 
simply calculated as the sum of translational and rotational 
motion ranges in units of mm and degrees, respectively. 
Alternatively, Tisdall et al. [26] computed the motion score 
for motion between two neighboring TRs as the sum of 
translations and the maximum shift caused by rotations of 
a point on a sphere with a radius of 64 mm. The maximum 
motion score over all TRs will be referred to as MSTisdall 
to distinguish it from the motion score defined in Ref. [25] 
which will be referred to simply as motion score.
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Brain morphometric parameters

Two voxel-based brain morphometric parameters were 
extracted using the segmentation algorithm [27] in 
SPM12, including gray matter (GM) and white matter 
(WM) volume. The GM and WM volumes were calculated 
by multiplying the voxel size and the number of segmented 
voxels from the tissue probability maps with a threshold 
of 0.5. Prior to segmentation, B1 bias field correction was 
performed. The SPM parameters were set as follows: 
the cut-off full width at half maximum of Gaussian 
smoothness of bias field was set to 50 mm. The numbers 
of Gaussians used to represent the intensity distribution 
for GM, WM and cerebrospinal fluid were 2, 2, and 3, 
respectively. The “thorough clean-up” option in SPM 

segmentation algorithm was used to remove non-brain 
voxels.

The AIC of GM and WM volumes was calculated as the 
percent volume difference of motion-affected images from 
still scan images.

Image similarity and artifact metrics

To assess image similarity of still scan and simulated images 
with measured motion scan images, structural similarity 
index measure (SSIM) and peak signal-to-noise ratio 
(PSNR) within GM and WM were calculated. The still scan, 
motion scan and simulated images all underwent bias field 
correction. Then the still scan and simulated images were 
registered to the corresponding motion scan image using 

Fig. 2   Representative still scan, motion scan, and simulated images 
for step-wise motion. A From left to right, upper panels are still scan, 
motion scan, and simulated (Simu 1–4) images, respectively. Middle 
panels are zoomed images of regions marked with red rectangles, 

respectively. Lower panels are differences between the simulated 
and motion scan images scaled by a factor of 10. B Motion profile of 
motion scan. The motion score and MSTisdall are 5.37 mm and 2.64 
mm, respectively
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co-register algorithm [28] in SPM12 with the 4th B-Spline 
interpolation to minimize voxel mismatches due to head 
motion and ensure smooth transitions between voxels so 
as to maintain anatomical and artifact fidelity. Intensity 
normalization was applied to ensure overall intensity 
consistency across different images. Blurriness at lateral 
ventricle-WM boundary was calculated as the full width at 
half maximum (FWHM) of an edge function fitted to the 
scatter plot of intensity versus distance to the boundary 
plane of all voxels within the region of interest (ROI) [29]. 
The ROI was a cuboid across the boundary with a size of 4 
(R-L) × 8 (A-P) × 6 (S-I) mm3. The contrast-to-noise ratio 
between GM and WM (CNRGM/WM) was used to measure 
the artifact-induced intensity variations on brain tissue, 
which was calculated as the ratio of the mean GM and WM 
intensity difference to the square root of the sum of signal 
variances within GM and WM after correcting intensity 
inhomogeneity in SPM12. The GM and WM masks were 
the same as those used to obtain morphometric parameters. 
The background noise level (Noisebg) was calculated as the 
standard deviation of intensities within 24-mm-wide squares 
at the four corners of all axial slices.

To quantify the artifact discrepancy between simulated 
and real motion scan images, the artifact difference was 
quantified by their mean squared voxel-wise intensity 
difference subtracted by noise variance. A first-order 
polynomial was used to fit the intensity within an ROI 
located in homogeneous WM in the still scan images with 
a size of 8 (R-L) × 8 (A-P) × 8 (S-I) mm3. Then the mean 
squared fitting residual was used to represent the noise 
variance on both still scan and motion-affected images.

Statistical analysis

The motion scores of still and motion scans were not 
normally distributed (Shapiro–Wilk test; p ≤ 1.5 × 10–4). 
Statistical difference of motion scores between the still 
and motion scans was assessed with Wilcoxon signed-
rank test. Analysis of variance (ANOVA) and post hoc 
Tukey–Kramer tests were performed to identify significant 
differences in image metrics between different simulation 
approaches. Wilcoxon signed-rank test with Bonferroni 
correction was performed to identify significant difference 
in the image metrics of still scan and simulated images 

Fig. 3   Representative still scan, motion scan, and simulated images 
for random motion. A From left to right, upper panels are still scan, 
motion scan, and simulated (Simu 1–4) images, respectively. Middle 
panels are zoomed images of regions marked with red rectangles, 

respectively. Lower panels are differences between the simulated 
and motion scan images scaled by a factor of 10. B Motion profile of 
motion scan. The motion score and MSTisdall are 3.54 mm and 2.12 
mm, respectively
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compared to motion scan image. The measured GM and 
WM volumes followed normal distribution (Shapiro–Wilk 
test; p ≥ 0.11). Pearson’s correlation test was performed 
to study the relationship between measured and simulated 
AICs and motion score. The consistency between measured 
and simulated AIC was analyzed using Lin’s concordance 
correlation coefficient (CCC) and mean absolute error 
(MAE) after excluding outliers. The outliers were identified 
as points that fell outside the lines representing the 95% 
confidence interval for the mean difference. The significance 
threshold of p values was set to 0.05.

Results

Capability of simulation in reproducing motion 
artifacts

Figure  S6 presents the estimated accuracy of FatNav 
motion parameters across all motion scans. The maximum 
rSDs were 0.070◦ for rotation around the RL axis and 

0.067 mm for translation along the IS axis, respectively. 
The means and the standard deviations of rSDs for rotation 
around the IS, RL and AP axes were 0.022◦± 0.011◦ , 
0.032◦± 0.014◦ , and 0.030◦± 0.011◦ , respectively. The 
means and the standard deviations of rSDs for translation 
along the IS, RL and AP axes were 0.037 ± 0.012 mm, 
0.026 ± 0.011 mm, and 0.033 ± 0.009 mm, respectively.

The motion scores of still and motion scans had 
ranges of 0.51 mm–2.37 mm (0.91 ± 0.48 mm), and 1.92 
mm–12.14 mm (5.48 ± 2.93 mm), respectively, which 
were significantly different from each other (Wilcoxon 
signed-rank test; p = 9.77 × 10–4), as shown in Fig. S7A. 
The mean values and the standard deviations of MSTisdall of 
still scans and motion scans were 0.53 ± 0.31 mm and 3.94 
± 2.77 mm, respectively, which also showed a significant 
difference (Fig. S7B). The motion scores were higher than 
MSTisdall. However, they exhibited strong correlations as 
shown in Fig. S7C (Spearman’s test; �=0.98, p = 2.08 
× 10–6), suggesting that both motion scores can reflect 
motion severity.

Fig. 4   Representative still scan, motion scan, and simulated images 
for peak-wise motion. A From left to right, upper panels are still scan, 
motion scan, and simulated (Simu 1–4) images, respectively. Middle 
panels are zoomed images of regions marked with red rectangles, 

respectively. Lower panels are differences between the simulated 
and motion scan images scaled by a factor of 10. B Motion profile of 
motion scan. The motion score and MSTisdall are 3.93 mm and 2.02 
mm, respectively
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The motion patterns of all the motion scans were 
classified into step-wise, random, and peak-wise, and the 
numbers of scans in the three categories were 7, 2, and 3, 
respectively. Figures 2, 3, and 4 show the representative 
motion profiles and images for step-wise, random, and 
peak-wise motion, respectively. As visualized in the zoomed 
images, image-based approaches (Simu 1–2) generated more 
severe blurring and ringing artifacts at GM/WM boundary 
compared to the motion scans, resulting in relatively lower 
SSIM and PSNR. On the contrary, Simu 3–4 reproduced 
artifacts that were most similar to motion scan and exhibited 
the lowest intensities in the difference images for all motion 
types.

The boxplots in Fig. 5A compare the image metrics of 
still scan, motion scan and simulated images. Their mean 
values are shown in Fig. 5B. The k-space-based approaches 
(Simu 3–4) exhibited overall higher similarity to the real 
motion scans in GM and WM (SSIM ≥ 0.85; PSNR ≥ 
31.60) compared to the magnitude image-based approaches 
(Simu 1–2) (SSIM ≤ 0.81; PSNR ≤ 28.86) although only the 
PSNR differences between Simu 3–4 and Simu 2 reached 
significance (ANOVA; corrected p ≤ 0.03). There was no 
significant difference between Simu 1 and 2 or between 
Simu 3 and 4 (ANOVA; corrected p ≥ 0.97) in SSIM or 
PSNR. The blurriness and CNRGM/WM between still and 
motion scans exhibited significant difference (Wilcoxon 
signed-rank test; corrected p ≤ 0.002). Compared to Simu 
1–2 and still scans, Simu 3–4 were closer to the motion scan 
in terms of blurriness and CNRGM/WM although there were 

still significant differences between Simu 3–4 and motion 
scan in CNRGM/WM. All simulations resulted in significantly 
higher Noisebg compared to the motion scans, especially for 
Simu 1–2, which was also visible in the difference images 
in Figs. 2A, 3A and 4A.

Figure 6 shows the relative artifact difference within GM 
and WM of still scan and simulated images compared to 
motion scan image. Simu 3–4 can account for 23.18% of 
artifact variance within GM (Wilcoxon signed-rank test; 
corrected p ≤ 0.04), and 11.79% of artifact variance within 
WM, which was measured by the mean squared difference 
between still scan and motion scan image intensities in GM 
and WM. On the contrary, Simu 1–2 exhibited larger artifact 
difference from motion scan than still scan and Simu 3–4.

Capability of simulation in reproducing AIC

Figure 7 shows the correlations of AIC between simulated 
(Simu 1–4) and motion scan images. Among the four 
simulation approaches, Simu 3 achieved the overall highest 
consistencies (CCC ≥ 0.86) and the lowest errors (MAE 
≤ 0.009) for both GM and WM volumes. The magnitude 
image-based approaches (Simu 1–2) exhibited much lower 
CCC and higher MAE, except for the highest consistency 
achieved by Simu 2 for WM volume.

Figure 8 shows the correlations of AIC between dSimu 
and motion scan images. The dSimu and motion scan 
images for each data point had the same motion profile, 
but the subject for dSimu was different from that for the 

Fig. 5   Comparison of image metrics in four motion artifact 
simulations (Simu 1–4). A Boxplots of SSIM, PSNR, blurriness, 
contrast-to-noise ratio between gray and white matter (CNRGM/WM) 
and background noise (Noisebg). SSIM and PSNR were calculated 
relative to the real motion scan image. Black dashed lines represent 
the mean values of still or motion scans. Red triangle represents 
the mean value of each approach. ANOVA with Tukey–Kramer 

correction was performed in the first two columns and Wilcoxon 
signed-rank tests with Bonferroni correction were performed between 
motion scan and still scan/Simu in the last three columns. *p < 0.05, 
**p < 0.01. The pairs that do not show significant difference are not 
marked. B Mean values of image metrics. Red dashed line indicates 
the mean value of still or motion scan
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motion scan image. Consistencies between simulated and 
measured AIC were the strongest for dSimu 3 (CCC ≥ 
0.64; MAE ≤ 0.013). However, all CCC of dSimu were 
lower than those of Simu especially for WM volume.

Relationships between AIC and motion score

Figure  9 shows the relationship between the measured 
AIC of motion scan and motion score for all subjects. A 

Fig. 6   Comparison of artifact differences within gray and white 
matter of still scan and simulated images compared to motion scan 
images. The relative artifact difference was calculated by the ratio of 
the mean squared difference between Simu 1–4 and motion scan to 

the mean squared difference between still and motion scans  in (A) 
gray matter and (B) white matter. Red dashed line indicates the value 
of still scan. Wilcoxon signed-rank test was performed between still 
scan and Simu 1–4 with Bonferroni correction. *p < 0.05

Fig. 7   Comparison of correlations between simulated and measured 
artifact-induced changes (AIC) in four motion artifact simulations 
(Simu 1–4)  (A-D). Simulated and measured AICs represent the 
percent volume changes of simulated and motion scan images 
compared to the still scan images. Red lines denote identity lines. 

Red pluses denote outliers that fall outside the lines representing the 
95% confidence interval for the mean difference. Lin's concordance 
correlation coefficient (CCC) and mean absolute errors (MAE) are 
shown after excluding the outliers
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significant negative correlation was observed in GM volume 
(Pearson’s test; �=-0.79, p = 0.002), and a significant positive 
correlation was observed in WM volume (Pearson’s test; �
=0.71, p = 0.010). Such significant correlations were also 
found but weaker when using MSTisdall as shown in Fig. S8.

Figure 10 shows the relationships between simulated 
AIC and motion score for step-wise, random, and peak-wise 
motions, respectively. For each motion type, the simulated 
AIC and motion scores were originated from the same 
motion pattern but with scaled motion parameters. The 

scaled motion profiles for step-wise, random, and peak-wise 
motions are shown in Figs. S3–S5, respectively. Significant 
correlations were found for all motion types (Pearson’s test; 
p ≤ 0.002), suggesting a linear relationship between the AIC 
and motion score within the range of 1.8–9.1 mm across 
different motion scenarios. The non-zero intercepts may 
indicate a potential non-linear relationship in cases with 
small motion (motion score < 1.8 mm).

The motion profile with the same motion score but different 
patterns resulted in different directions of morphometric 

Fig. 8   Comparison of correlations between simulated and measured 
artifact-induced changes (AIC) in four motion artifact simulations 
(dSimu 1–4)  (A-D). Simulated and measured AICs represent the 
percent volume changes of simulated and motion scan images 
compared to the still scan images. For each data point, the measured 
and the simulated AICs were originated from the same motion 

profile, but the AIC of dSimu was calculated on a subject different 
from the subject for measured AIC. Red lines denote identity lines. 
Red pluses denote outliers that fall outside the lines representing the 
95% confidence interval for the mean difference. Lin's concordance 
correlation coefficient (CCC) and mean absolute errors (MAE) are 
shown after excluding the outliers

Fig. 9   Correlations between 
the measured artifact-induced 
change (AIC) of A gray 
matter volume and B white 
matter volume and motion 
score. The measured AIC 
represents the percent parameter 
change between the motion 
scan and still scan images. 
Coefficients and p values for 
Pearson’s correlation test are 
shown, where asterisks denote 
significance (p < 0.05)
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parameter changes. As motion score increased from 1.8 mm to 
9.1 mm, the WM volume significantly increased by 2.99% and 
1.65% in the case of step-wise and peak-wise motion (Fig. 10A 
and C), while significantly decreased by 1.35% in the case of 
random motion (Fig. 10B).

Discussion

In this study, we compared four motion artifact simulation 
approaches in reproducing motion artifacts and AIC in 

Fig. 10   Correlations between 
the simulated artifact-induced 
change (AIC) of gray matter 
and white matter volumes and 
motion score for A step-wise 
motion, B random motion, 
and C peak-wise motion, 
respectively. The simulated AIC 
represents the percent parameter 
change between Simu 3 and still 
scan image. For each motion 
type, the simulated AIC and 
motion scores were originated 
from the same motion pattern 
but with scaled motion 
parameters, whose motion 
scores were set to 1.8 mm, 2.9 
mm, 3.9 mm, 5.0 mm, 6.1 mm, 
7.1 mm, 8.1 mm and 9.1 mm. 
The scaled motion profiles 
for step-wise, random, and 
peak-wise motions are shown 
in Figs. S3–S5, respectively. 
Coefficients and p values for 
Pearson’s correlation test are 
shown, where asterisks denote 
significance (p < 0.05)



	 Magnetic Resonance Materials in Physics, Biology and Medicine

brain morphometric parameters. We found the superior 
performance of multi-channel complex k-space database 
simulations (Simu 3–4) over the magnitude image-based 
simulations (Simu 1–2) in both artifact similarity and 
AIC consistency with motion scans. The simulations with 
different motion introduction strategies (MDV and MCP) 
achieved comparable results. By means of simulation, we 
found that motion systematically biased the morphometric 
measurements in a motion pattern-dependent manner.

Currently, the motion artifact simulation approaches 
are categorized by the domain in which the motion effects 
are introduced [30]. The proposed approaches Simu 1–4 
all introduce motion effects in k-space. Another popular 
simulation approach is introducing motion effects in image 
domain based on the coil-combined magnitude image [1, 
4, 5, 8, 17], which is performed by rigidly transforming the 
magnitude image, concatenating the corresponding k-space 
lines of the Fourier transform of the transformed images, and 
obtaining the final image by iFFT. Simu 1 that adopts MDV 
based on magnitude image is similar to simulation in image 
domain. The k-space data obtained with Fourier transform 
of the object after space transformation are equivalent to the 
data obtained with MDV, except for some likely difference 
resulting from different numerical approaches adopted for 
interpolation during space transformation versus NUFFT.

The multi-channel k-space database simulation 
approaches (Simu 3–4) achieved overall higher similarity 
to the motion scans than the magnitude image-based 
approaches (Simu 1–2) (Fig. 5). Although Simu 1–2 entails 
much lower computational cost, they generated more 
severe blurring and ringing artifacts at GM/WM boundary 
and higher background noise than Simu 3–4. The superior 
performance of Simu 3–4 may be related to the fact that the 
multi-channel k-space data retain phase and coil sensitivity 
information, which enables more realistic simulation of 
motion artifacts.

On the other hand, the image similarity metrics between 
the simulations that introduced motion effects by MDV 
(Simu 1 and 3) and MCP (Simu 2 and 4) did not reach 
significant difference. This suggests that both approaches 
have similar performance in reproducing artifacts although 
the modification of k-space data without changing the 
k-space coordinates in Simu 1 and 3 matches more closely 
to the actual data sampling and image reconstruction process 
in the presence of motion [6]. Furthermore, in contrast to 
Simu 1–3, Simu 4 did not require artificial assignment of 
motion parameters for unsampled k-space positions.

Both MDV (Simu 3) and MCP (Simu 4) achieved lower 
artifact differences from the motion scan images than the 
still scan images (Fig. 6). However, the reductions in mean 
squared difference were less than 27% and 14% of the 
artifact variance in GM and WM, respectively. The residual 
differences may suggest the presence of other motion artifact 

mechanisms that were not considered in simulation, such as 
motion-induced coil sensitivity map [31, 32] and B0 field 
changes [33, 34].

We found a linear relationship between the simulated 
AIC and the motion score (Fig. 10) for a given motion 
pattern. An earlier study [11] has found a linear relationship 
between GM volume and severity of real intentional motion, 
consistent with our findings. Our study conducted the 
simulations based on three distinct motion patterns (step-
wise, random, and peak-wise motion) at eight motion 
severities. While the motion scores were kept consistent 
across different motion patterns, the variations in their 
resulting AICs were noteworthy. The directional changes 
of AIC suggest that motion induces a systematic bias in 
morphometric measurements, rather than simply increasing 
the variance of the measurements.

We found that the AIC varied in a motion pattern-
dependent manner by means of simulation. The correlation 
between WM volume and motion score was positive in 
the step-wise and peak-wise motion, while negative in the 
random motion. This may be attributed to distinct artifact 
characteristics at GM/WM boundary caused by different 
motion patterns. Some ringing artifacts may create localized 
signal voids or hyperintensities that mimic or obscure GM/
WM boundary. In addition, motion artifacts may also lead 
to sub-optimal registration and bias field correction, thus 
affecting the segmentation accuracy and contributing to 
AIC.

We found a significant reduction in GM volume and a 
significant increase in WM volume with increased motion 
severities in real images (Fig. 9), consistent with previous 
findings [10–15]. These correlations were weaker than those 
between simulated AIC and motion due to inter-subject 
variability in motion patterns. Most motion patterns of the 
motion scans belonged to step-wise motion, which may 
explain the positive correlation in WM volume.

The AIC estimated from the simulated motion-affected 
images of different subjects (dSimu) also exhibited 
consistencies with the measured AIC estimated from real 
motion scan (Fig. 8). However, such consistencies were 
lower than Simu, which may be due to different head 
positions and different shapes of brain structures across 
subjects. The advantage of dSimu is its applicability to 
subjects with a high incidence of motion, for whom high-
quality artifact-free images are often not available.

We found that the fluctuations of FatNav-estimated 
motion parameters (mean rSD ≤ 0.032◦ and 0.037 mm) 
were several times smaller than the imaging resolution, 
suggesting that the FatNav can provide an accurate 
estimate of head position changes. However, there may 
be measurement errors due to limited temporal resolution 
of FatNav (~ 0.4 Hz), especially in the presence of fast 
and abrupt motion. This may be resolved in future by 
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reacquisition of k-space data when the estimated motion 
is greater than a certain motion threshold.

The current study has the following limitations: first, 
our simulations only consider effects of motion-induced 
k-space coordinate and phase changes. There are other 
mechanisms that might also contribute to motion artifacts, 
including the coil sensitivity map [31, 32], B1 field [35], 
and local B0 field changes [33, 34], and gradient non-
linearities [36]. Second, the performance of dSimu might 
be further improved if the baseline artifact-free images are 
first aligned to the motion-affected images using non-rigid 
registration. Third, the present study employed pseudo-
random k-space undersampling pattern and the SPIRiT 
algorithm to fill the unsampled k-space positions. It 
remains unclear how well the results can be generalized to 
new sampling patterns and reconstruction algorithms, such 
as parallel imaging and GRAPPA. Fourth, although Simu 
3–4 can reproduce the artifacts and AIC more accurately, 
they entail storage of larger amounts of data and much 
higher computational cost than the other two approaches. 
Furthermore, motion parameters are needed for artifact 
simulation, which are often not available in clinical studies 
due to the lack of motion tracking techniques.

Conclusions

Our study found superior performance of simulation based 
on multi-channel complex k-space-data compared to 
simulation based on channel-combined magnitude images, 
and comparable performance of two different motion 
introduction strategies, MCP and MDV, in reproducing 
artifacts and AICs. Motion-induced systematic biases 
in brain morphometric parameters varied linearly with 
motion severity in a motion pattern-dependent manner.
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