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Purpose: To develop a prospective motion correction (MC) method for phase
contrast (PC) MRI of penetrating arteries (PAs) in centrum semiovale at 7 T and
to evaluate its performance using automatic PA segmentation.
Methods: Head motion was monitored and corrected during the scan based on
fat navigator images. Two convolutional neural networks (CNN) were developed
to automatically segment PAs and exclude surface vessels. Real-life scans with
MC and without MC (NoMC) were performed to evaluate the MC performance.
Motion score was calculated from the ranges of translational and rotational
motion parameters. MC versus NoMC pairs with similar motion scores during
MC and NoMC scans were compared. Data corrupted by motion were reacquired
to further improve PA visualization.
Results: PA counts (NPA) and PC and magnitude contrasts (MgC) relative to
neighboring tissue were significantly correlated with motion score and were
higher in MC than NoMC images at motion scores above 0.5–0.8 mm. Data reac-
quisition further increased PC but had no significant effect on NPA and MgC.
CNNs had higher sensitivity and Dice similarity coefficient for detecting PAs
than a threshold-based method.
Conclusions: Prospective MC can improve the count and contrast of seg-
mented PAs in the presence of severe motion. CNN-based PA segmentation has
improved performance in delineating PAs than the threshold-based method.
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1 INTRODUCTION

Cerebral small vessel disease (SVD) is a condition postu-
lated to have multiple different etiologies. It may result
from a cascade of events, starting with endothelial dys-
function in the penetrating arteries (PAs).1 Other possi-
ble causes include the thickening of the arterial media
due to lipohyalinosis or obstruction of the origins of PAs

by parent artery intimal plaques, which lead to brain
ischemia resulting in deep small infarcts and leakage
of fluid causing edema and later gliosis in white mat-
ter (WM) tracts.2 Additionally, inflammation might also
be involved in the development of PA leakage and
endothelial dysfunction, although the causal relation-
ships are yet to be established.3 Cumulatively, SVD might

© 2022 International Society for Magnetic Resonance in Medicine

2088 wileyonlinelibrary.com/journal/mrm Magn Reson Med. 2022;88:2088–2100.

 15222594, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29364 by C

as - Shanghaitech U
niversity, W

iley O
nline L

ibrary on [04/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4235-6948


MOORE et al. 2089

lead to substantial cognitive,4–6 psychiatric,7 and physical
impairment.8,9

Phase contrast (PC) MRI is a common method for
imaging arteries and can visualize a large number of PAs
(27–91) in centrum semiovale at 7 T.10,11 One major con-
cern that arises during imaging is the susceptibility to
motion which reduces PA visibility and might introduce
artificial group differences due to different motion tenden-
cies between the participants. As the PC MRI only covers a
single slice, prospective motion correction (MC) is needed
to ensure consistent imaging location in the presence of
head motion. In this study, we will evaluate the improve-
ments of PA visualization by prospective MC based on
motion parameters derived from whole-brain fat navigator
(FatNav) images.12

Accurate segmentation of PA is a key step in objec-
tive evaluation of improved PA visualization by MC and in
future studies delineating the roles of PAs in SVD. Auto-
matic PA segmentation can increase objectivity and avoid
tedious manual segmentation in large image sets, although
it may still carry biases. Existing automatic segmentation
methods relied on applying thresholds on the phase differ-
ence (PD) and magnitude images to delineate PAs which
only controls for false positive rates, but might suffer from
a high false negative rate due to the low contrast to noise
ratio of some PAs in the images.10,11 Here, we evaluate
the performance of a two-dimensional multichannel mul-
tiscale encoder decoder network (M2EDN) for segmenting
the PAs, which was adopted from a three-dimensional
(3D) M2EDN originally developed for perivascular spaces
(PVS) segmentation.13 Furthermore, since some arteries
on cortical surface mimic PA, a WM mask can be applied
to remove such false PAs and further improve segmen-
tation accuracy. To this end, we also developed a 3D
U-NET to segment the WM masks on 3D T2-weighted
(T2w) images that were acquired during the same imaging
sessions.14

2 METHODS

2.1 Subjects

This study was approved by the Institutional Review Board
of the University of North Carolina at Chapel Hill. Written
informed consents were obtained from all subjects before
the scans. Two separate experiments were performed:
Experiment 1 (Exp 1) acquired images used for training
the convolutional neural network (CNN) parameters and
Experiment 2 (Exp 2) was carried out to evaluate the per-
formance of MC. 39 healthy volunteers (aged 21–55 years,
28 females) were included in Exp 1 and 22 patients with
diabetes and 17 healthy controls (aged 37–70 years, 22

females) were included in Exp 2. As this study focuses
only on evaluation of segmentation and MC methods, the
comparison of PA features between patients and healthy
controls will not presented here.

2.2 Data acquisition

All images were acquired on a 7T MRI scanner (Siemens
Healthineer). In Exp 1, a 32-channel receiver and
8-channel transmitter head coil (Nova Medical) was used.
No radio frequency magnetic field (B1) shimming was per-
formed. In Exp 2, the images were acquired using a Nova
32-channel receiver and single-channel volume transmit-
ter coil. The subjects were asked to keep their heads still
during all scans.

A 3D variable flip angle turbo spin echo (TSE)
sequence (TR = 3 or 3.4 s; TE = 326 ms; TA = 8:03
min) was used to acquire T2w images with voxel
size = 0.41× 0.4×0.4 mm3 for WM segmentation.15,16

A FatNav image12 was acquired within each TR to
monitor head motion. In Exp 1, the FatNav images
(voxel size = 2.2× 2.2× 2.2 mm3, TE/TR/TA = 1.5 ms/3.1
ms/0.89 s, flip angle = 7◦) were not utilized to correct
motion in the present study, although they had been uti-
lized to perform retrospective MC in a separate study.17

In Exp 2, the FatNav images (voxel size = 3× 3× 3 mm3,
TE/TR/TA = 1.31 ms/3 ms/0.47 s, flip angle = 7◦) were
used to measure motion parameters relative to the first
FatNav image and perform prospective MC.

Then, a single slice PC MRI scan (TR = 30 ms;
TE = 15.7 ms; TA = 3:13 min, NA = 10, no cardiac trig-
ger) was performed to image PAs in centrum semiovale.
The slice was positioned 15 mm above the corpus callosum
and parallel to the anterior – posterior commissure line.
No FatNav was acquired for the PC MRI scans in Exp 1. In
Exp 2, the FatNav and PC MRI data were acquired alternat-
ingly as shown in the sequence diagram in Figure 1. The
FatNav had the same spatial resolution, field of view, and
TE as in the TSE sequence but different TR (30 ms) and
flip angle (14◦). The FatNav image TR was 4.68 s. Motion
parameters were received 2.1 s after the completion of each
FatNav image acquisition due to reconstruction and regis-
tration times. The addition of the FatNav module into the
PC-MRI sequence did not increase TR in Exp 2 as com-
pared to Exp 1, since the duration of the FatNav module
was only 3.5 ms. After acquiring and reconstructing each
FatNav image, motion parameters were estimated using
vendor software on the scanner (MOCO functor) and the
PC-MRI slice position and readout, phase encoding, and
slice normal directions were adjusted accordingly. As the
slice was prescribed based on the TSE images, to correct
for potential motion between the TSE and PC MRI scans,
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2090 MOORE et al.

F I G U R E 1 Pulse sequence of the phase contrast-MRI
sequence interleaved with fat navigator (FatNav) acquisition. The
widths of the different modules do not scale with their durations.
The total durations of the phase contrast and FatNav modules and
the separation between them are provided at the bottom of the figure.

the FatNavs in PC MRI were registered to the first FatNav
from the TSE-MRI scan.

Because of the relative long time for FatNav acquisi-
tion and reconstruction (6.78 s), motion occurred during
this period cannot be corrected. Therefore, reacquiring
k-space data during periods with large motion may fur-
ther improve image quality. For this purpose, k space data
were divided by the times when the motion parameter
feedbacks were received into blocks. Define Tmax and Rmax
as the maximum translational and rotational motions that
occurred during acquisition of the data block and asso-
ciated FatNavs. The data block was reacquired if Tmax
>0.1 mm or Rmax > 0.1◦. The details of Tmax and Rmax calcu-
lation can be found in Section 1 of Supporting Information
Appendix S1. After data reacquisition completed, the same
criterion was used to determine whether the required data
needed to be reacquired once more. The scan stopped until
no further reacquisition was needed or the total reacquisi-
tion time exceeded the original scan time.

Three types of PC MRI scans were performed: (1)
MC on but reacquisition off, (2) both MC and reacquisi-
tion on, (3) both MC and reacquisition off while FatNavs
was still acquired (denoted as NoMC). The number of
subjects undergoing each scan type is shown in Support-
ing Information Figure S1. In total, 39, 75, and 20 scans
were acquired for Types 1, 2, and 3, respectively. Further-
more, to study whether the insertion of the FatNav module
into the sequence would impact the quality of PC MRI
images, the scan type 1 and the conventional PC MRI
scan without the FatNav module were acquired in an addi-
tional subject with the subject keeping his head still in
both scans.

At the beginning of each sequence that contained Fat-
Navs, a navigator image that included fully sampled data
at the k-space center was acquired for image reconstruc-
tion. The undersampled k-space for FatNav was filled line

by line and top-down through k-space. The parameters for
all the sequences are provided in Supporting Information
Table S1.

2.3 Segmentation

2.3.1 U-NET and M2EDN for automatic PA
segmentation

The U-NET for segmentation of TSE images output five
probability images corresponding to the background, tha-
lamus, basal ganglia (BG), WM, and midbrain, respec-
tively. Each voxel was assigned to the tissue type with the
highest probability among the 5 images. The PD images
and the magnitude images (referring to the ones with flow
encoding gradient off throughout the paper) from the PC
MRI were input to a modified M2EDN network for seg-
menting PAs. The network output a probability map and
pixels with probability above 0.8 within the WM masks
were classified as PA.

The networks were trained using masks manually
drawn on the TSE and PC-MRI images from Exp 1. All
images were used for training the final models to be used
for segmenting images in Exp 2. In addition, to evaluate
segmentation performances, we divided the images into 10
groups wherein each subject was assigned to only one of
the 10 groups. Nine groups were used for training and the
remaining one for testing the segmentation performance,
and training was repeated for each of the 10 possible com-
binations. Using the group that was left out for testing,
we analyzed segmentation performances of our networks
using sensitivity (SEN), positive predictive value (PPV),
and Dice similarity coefficient (DSC) as:

PPV = TP∕(TP + FP)

SEN = TP∕(TP + FN)

DSC = 2TP∕(2TP + FP + FN),

where TP, FP, and FN stand for the number of true posi-
tive, false positive, and false negative voxels, respectively,
using the manually drawn masks as ground truth. Addi-
tionally, since the true size of PAs were less than 1 voxel
in the PC MRI images and the main goal of the segmen-
tation algorithm was to simply detect visible PAs, but not
to delineate their spatial extent, the three parameters were
also calculated using TP, FP, FN for true positive, false
positive, and false negative spatially connected clusters. A
predicted cluster is considered to be a true cluster if it spa-
tially overlaps with a cluster in the ground truth mask. The
WM masks were applied to remove false PA voxels outside
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F I G U R E 2 Representative fat
navigator images acquired in the (A)
TSE and (B) phase contrast (PC)-MRI
sequences.

the WM before calculating both the voxel and cluster level
parameters.

Further details of the ground truth, CNN architec-
tures, and model training can be found in Sections 2–4 of
Supporting Information Appendix S1.

2.3.2 WM mask for PC MRI

The WM masks are needed both for normalizing the image
intensities of the input images to M2EDN and for remov-
ing false PA voxels. To generate the WM masks, we first
obtained the 3D WM masks by segmenting the TSE images
with U-NET and then resampled the masks at the pixel
positions of the PC MRI images. Then, the resampled
WM masks were manually adjusted to account for possi-
ble head movement between the T2w and PC MRI scans
(Exp 1) or for a slight mismatch between prescribed and
measured slice positions even after MC. The mismatch was
caused by subtle differences between the FatNav images
acquired during the TSE and PC MRI sequences, as can
be seen in Figure 2. As a result of the subtle differences,
there existed systematic errors (nonzero biases) in esti-
mated motion parameters. The above procedure generated
the WM masks for 50 of the 61 PC MRI images in Exp 1,
as spatially aligned 3D WM masks were unavailable in the

remaining subjects. For those remaining subjects, the WM
masks were manually drawn.

2.3.3 Conventional WM and PA
segmentation

For comparison, we also obtained PA and WM masks using
a threshold-based method10 and the FAST segmentation
tool in FSL,18 respectively. Further details can be found in
Section 5 of Supporting Information Appendix S1.

2.4 Data analysis

2.4.1 Image reconstruction

Details of FatNav image reconstruction has been described
before,17 where we applied the GRAPPA reconstruction
algorithm.19 The TSE images were reconstructed by the
vendor provided software on the scanner.

PC MRI images were reconstructed offline to a voxel
size of 0.1563× 0.1563 mm2 by zero padding in k-space
before inverse Fourier transform. Images from repetitions
2–10 were averaged. The first repetition was discarded
because there was inherent slice position inconsistency
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2092 MOORE et al.

between k-space data acquired before and after receiving
the first feedback during the first repetition. The incon-
sistency can be caused by head motion between the TSE
and PC-MRI scans and/or the above-mentioned system-
atic error in motion parameters. Then, coil-combined PD
and magnitude images were obtained as described in Ref-
erence 10.

To study whether replacing data affected by motion can
further improve image quality, we reconstructed images
after replacing a data block in the original acquisition
by a reacquired block at the same k-space locations if
Tmax + Rmax of the original block (Tmax,orig + Rmax,orig) is
greater than that of the reacquired block (Tmax,racq and
Rmax,racq). Additionally, to mitigate cases where the above
condition was met simply due to measurement errors in
Tmax and Rmax, but not due to actual motion in the original
acquisition, we also reconstructed images by enforcing the
following two additional criteria for data replacement: (1)
Tmax,orig or Rmax,orig are above certain thresholds, and (2)
Tmax,racq and Rmax,racq are below the same thresholds. Five
different thresholds were used from (0.1 mm, 0.1 deg) to
(0.5 mm, 0.5 deg) in step of (0.1 mm, 0.1 deg).

2.4.2 Motion parameters

To investigate whether the differences in PA parameters
between MC and NoMC scans depended on the motion
severity, rotational (MR) and translational (MT) motion
ranges were calculated for all scans. MR (MT) was defined
as the root mean square of the differences of the maximum
and minimum values of the three rigid-body rotational
(translational) parameters of all FatNav images acquired
during repetitions 2–10. Note that the motion parame-
ters were estimated assuming the axes for rotation passed
through the center of the field of view. A motion score
was defined as: score = MT + 57.3 mm ×MR, where MT
and MR are in units of mm and radians, respectively. The
motion score is similar to that defined in Reference 20 and
corresponds to adding to MT a shift caused by rotation
MR of a point on the surface of a sphere with a radius of
57.3 mm. For simplicity, the radius of 57.3 mm is chosen
instead of the 64 mm in Reference 20 such that the score
is simply equal to the sum of MT and MR when they are in
units of mm and degrees, respectively.

2.4.3 PA parameters

The PC MRI images in Exp 2 were segmented using the
trained M2EDN described in Section 2.3.1. The number
of PAs (NPA) was calculated as the number of spatially
connected clusters in the final masks after excluding false

PA voxels outside the WM masks. Furthermore, we cal-
culate phase and magnitude contrasts (denoted as PC and
MgC) between PA clusters and neighboring WM voxels
and averaged them over all PA clusters that match between
a “MC vs NoMC” (MC-NoMC) pair or between a pair of
images with versus without data replacement (denoted as
DR pair) from Type 2 scans. Details of PC and MgC calcula-
tions are provided in Section 6 of Supporting Information
Appendix S1.

The MC-NoMC pairs were formed by pairing the
NoMC (Type 3) scan with each of the MC scans (Types 1
and 2) in the same subject, with only images without data
replacement used for Type 2 scans. The image pairs were
visually inspected and those showing clear slice coverage
mismatch (likely due to motion during or before the NoMC
scans) between the two images were excluded. As a result,
images from five subjects were excluded, resulting in 44
pairs for comparison. On the other hand, there were 75 DR
pairs for comparing the effects of data replacement.

The MC-NoMC pairs were divided into three groups
based on the difference in motion scores within each pair.
The pairs with motion score difference between MC and
NoMC <−0.4 mm, between −0.4 mm and 0.4 mm, and
>0.4 mm were defined as having less, similar, and more
motion during MC scan, respectively. The threshold of
0.4 mm is roughly twice the sum of root mean squares of
residual standard deviations of the rotational and trans-
lational parameters estimated in our previous study.17

Among the 44 pairs, there were 11, 28, 5 pairs that had less,
similar, and more motion during the MC scans, respec-
tively. The mean and range of the motion scores for each
group are given in Table S2. Only the 28 pairs with similar
motion will be presented in the main text, while compar-
ison of the other pairs will be described in Section 7 in
Supporting Information Appendix S1.

2.4.4 Statistical analysis

Wilcoxon’s signed rank tests were performed to compare
the PPV, SEN, and DSC values of the conventional and
CNN-based segmentation methods. For PA segmentation,
the threshold scale of the conventional method for com-
parison was chosen as the one that had the largest DSC.
To evaluate the effects of MC and data reacquisition,
Wilcoxon’s signed rank tests were also performed to com-
pare the PA parameters with MC versus NoMC and with
versus without data replacements. Furthermore, we cal-
culated the Spearman’s correlation coefficients between
the PA parameter differences in MC-NoMC pairs and the
motion scores (means over the MC vs. NoMC pairs), and
between the PA parameter differences in DR pairs and the
percentage of data replaced.
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For all statistical tests, p values less than 0.05 are con-
sidered significant after Bonferroni correction for multiple
comparison (i.e. comparing multiple parameters).

3 RESULTS

Table 1 (Rows 1–4) provides SEN, PPV, and DSC values
for the four ROIs segmented by U-NET. SEN values are
highest for thalamus (0.82) and lowest for midbrain (0.68).
PPV values across all four ROIs range between 0.8 and 0.89
and DSC values range from 0.74 to 0.85, indicating a high
degree of similarity between the U-NET and GT segmen-
tations of the four ROIs. For comparison, the SEN, PPV,
and DSC of the FAST WM masks are shown in Row 5. The
PPV and DSC of FAST are significantly lower than those of
U-NET (p = 0.0020), while SEN is not significantly differ-
ent (p = 0.375). Figure 3 shows representative T2w slices
that intersect the four brain regions and the overlaying
ROIs generated by the trained U-NET model.

Figure 4A shows representative PD and magnitude
images with overlaying PA masks generated by the
M2EDN. Two false PAs were detected in a sulcus of the
brain, as denoted by the arrows, which were removed by
applying the WM mask as shown in Figure 4B. Table 1
(Rows 6 and 7) gives SEN, PPV, and DSC values of the
M2EDN masks evaluated at the voxel and cluster levels.
The cluster level values are higher than the correspond-
ing voxel level ones with the DSC value reaching a high
value of 0.83. Figure 5 compares the SEN, PPV, and DSC of
the M2EDN and threshold-based masks, where the results
are plotted at different thresholds above which poten-
tial PA voxels were defined. The SEN, PPV, and DSC of
the threshold-based masks reach maximum at threshold
scales of 3, 8, and 7, respectively. At threshold scale of

7, all the three parameters are significantly lower than
those of the M2EDN masks at both voxel and cluster levels
(corrected p ≤ 0.012, Wilcoxon’s signed rank test).

Figure 6A,B shows PD and magnitude images acquired
with prospective MC and with the conventional PC MRI
without the FatNav module, respectively, and without
intentional head motion in both scans. The motion range
as measured by FatNav were only MT = 0.27 mm and MR
= 0.15◦ in the scan with prospective MC, while the amount
of motion was unknown for the scan without FatNav.
The artifact levels were similar both in the brain and the
background between (A) and (B), demonstrating that the
FatNav module did not negatively affect image quality.

Figure 7 shows PC-MRI images from a representa-
tive MC-NoMC pair with similar motion, where PAs
appear to have higher contrast on the images with MC.
The head motion parameters were similar between the
MC and NoMC scans, where MT = 0.79 mm (MC) ver-
sus 0.59 mm (NoMC) and MR = 0.53◦ (MC) versus 0.54◦
(NoMC). Motion traces for the two scans can be found in
Figure S2. More PAs were segmented by M2EDN in the
images with MC, as shown in the last row of Figure 7.

Figure 8A–C shows the strong positive correlations
of the differences of NPA, PC, and MgC between images
in MC-NoMC pairs with mean motion scores (cor-
rected p< 0.023; Spearman’s correlation). Interestingly,
the y-intercept of the best-fitted lines are negative and the
motion scores below which the fitted lines for NPA, PC,
and MgC are negative are 0.81, 0.68, and 0.48 mm, respec-
tively. Table 2 (Columns 1–3) give the NPA, PC, and MgC
averaged over the MC-NoMC pairs. The images with MC
had significantly higher MgC (corrected p = 0.007), but no
difference in NPA and PC compared to the NoMC images.
In total, 46%, 48%, and 78% pairs had higher NPA, PC, and
MgC in images with MC, respectively.

T A B L E 1 Sensitivity (SEN), predictive value (PPV), and dice similarity coefficient (DSC) of thalamus, basal ganglia (BG), midbrain,
and white matter (WM) masks obtained using U-NET segmentation of T2w images (rows 1-4), of the WM masks from FAST (row 5), and
of penetrating artery masks (rows 6 and 7) obtained using the multichannel multiscale encoder decoder network (M2EDN) segmentation
of phase contrast (PC)-MRI images in Exp 1. The results (except for row 5) are averages across the 10 combinations of the training and
testing data groups. The numbers in parentheses are standard deviations.

SEN PPV DSC

U-NET Thalamus 0.77 (0.11) 0.91 (0.07) 0.83 (0.07)

BG 0.79 (0.08) 0.80 (0.16) 0.78 (0.09)

Midbrain 0.59 (0.24) 0.90 (0.05) 0.68 (0.22)

WM 0.74 (0.09) 0.88 (0.07) 0.79 (0.03)

FAST WM 0.77 (0.09) 0.61 (0.12) 0.68 (0.10)

M2EDN Voxel - level 0.56 (0.12) 0.82 (0.07) 0.66 (0.08)

Cluster - level 0.80 (0.10) 0.87 (0.08) 0.83 (0.06)
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2094 MOORE et al.

F I G U R E 3 (A)
Representative T2w images
in a single subject. (B)
Overlaid U-NET tissue
segmentation masks. The
yellow, green, red, and blue
regions are white matter,
basal ganglia, thalamus, and
midbrain, respectively.

Figure 8D–F shows the scatter plots of NPA, PC, and
MgC changes after data replacement versus the percent-
age of replaced data, when no motion score threshold
for data replacement was imposed. No significant corre-
lation was observed for NPA and MgC (p≥ 0.41), while a
significant positive correlation was observed for PC (cor-
rected p = 0.014). Table 2 (Columns 4–6) gives the NPA,
PC, and MgC averaged over the DR pairs. The images with
data replacement had significantly higher PC (corrected
p = 0.0012), but no difference in NPA and MgC compared
to the images without replacement. Similar results were
obtained when the threshold of (0.1 mm, 0.1◦) was applied
on Tmax and Rmax. When larger thresholds were adopted,
no significant change in PA parameters by data replace-
ment was observed. The changes in PA parameters for all
data replacement criteria and the Spearman’s correlation
coefficients with percentage of replaced data can be found
in Table S3.

4 DISCUSSION

In this study, we developed CNN-based automatic seg-
mentation methods for both WM and PAs based on 3D
U-NET and M2EDN, respectively. The CNNs increased the
SEN, PPV, and DSC of PA delineation compared to the
conventional threshold-based method. We then used these
automatic segmentations to evaluate the performance of

prospective MC for improving PA visualization in 2D PC
MRI. Compared to the NoMC scans with similar motion
scores, MC improved the visualization of PA in a motion
score dependent manner, as evidenced by positive NPA, PC,
and MgC changes at large motion scores. Reacquiring data
affected by head motion could further increase PC, but had
no significant effect on NPA or MgC.

Although CNN-based tissue segmentation of 7 T
healthy brain MRI images has been reported before,21,22

our study is the first to evaluate the performance of such
an approach for WM segmentation based on T2w images.
CEREBRUM-7T employed a deep encoder/decoder net-
work with three layers and achieved high DSC of 0.9
and 0.86 in WM and BG.21 However, T1-weighted images
which have higher gray-WM contrast were employed. In
our study, we acquired the T2w images instead because
they have higher contrast to noise ratio for imaging PVS.15

Although PVS results are not included in this paper, it will
be important to study PVS and PAs together as they are
both integral parts of the glymphatic system.23 Another
study segmented gray matter in 7T ex vivo T2w images
with 0.3× 0.3× 0.3 mm3 resolution and achieved DSC of
78.5% to 98.5%. However, the WM was not segmented.22

Our M2EDN outperformed the threshold-based
method for segmenting PAs for all three metrics except for
the voxel level SEN at threshold scales of 3–6. However,
there were large numbers of false positive voxels at such
threshold scales, resulting in low PPVs. The low PPVs
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MOORE et al. 2095

F I G U R E 4 (A) Phase difference and magnitude images of a representative subject overlaid with penetrating artery masks segmented
by multichannel multiscale encoder decoder network. (B) Resampled WM mask generated from the U-NET shown in yellow. The arrows
denote two false positive clusters on the cortical surface.

even at the highest threshold scale studied suggest that
without manual correction, the threshold-based method
cannot effectively control for the false positive rate, pos-
sibly due to imaging artifacts and intrinsic limitations of
the median filter for removing the background signal.

Our main motivation for adopting navigator-based MC
is that it does not require any external hardware, marker
attachment, or calibration. Although navigator-based MC
has been incorporated into various MRI sequences,20,24–30

it has never been applied to PC MRI. In previous applica-
tions, a complete dataset of navigator echo or image were
acquired in a single time block. This is impractical for PC
MRI due to its short repetition time. Therefore, the k-space

data for navigator and main images were acquired in an
interleaved fashion. A second distinction from previous
studies is that the fat signal was used for navigators which
allows one to optimize the flip angle to maximize the sig-
nal to noise ratio in the navigator data without saturation
effects on the main images.27

Interleaving the PC-MRI and FatNav modules may
introduce image artifacts due to possible interferences
between them. In our PC-MRI sequence, we applied a
constant gradient along the slice-selection direction after
readout to spoil the residual transverse magnetization. The
additional gradients from the FatNav module might negate
the effect of the spoiler gradients. To prevent this from
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2096 MOORE et al.

F I G U R E 5 (A) Sensitivity, (B) positive predictive value, and (C) dice similarity coefficient of penetrating artery masks obtained using
the multichannel multiscale encoder decoder network (M2EDN) (red line) and threshold-based method at different threshold scaling factors
(blue curve). The top and bottom rows are calculated at the voxel and cluster levels, respectively. The asterisks denote significant difference
between M2EDN and threshold-based masks when threshold scale = 7.

F I G U R E 6 Comparison of phase diffference (PD) and magnitude (Mag) images from phase contrast MRI acquired (A) with and (B)
without the fat navigator module. Motion correction (MC) was turned on in (A). The intensity window in the right column is chosen to show
possible ghosting artifacts in the background.
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MOORE et al. 2097

F I G U R E 7 Comparison of phase contrast (PC)-MRI images with (A) MC and (B) NoMC in a MC-NoMC pair with similar motion. The
red circles enclose penetrating arteries (PAs) that show higher contrast in (A) than in (B). The PA masks generated by multichannel
multiscale encoder decoder network are shown in the last row. To guide the eye, yellow circles are placed around the segmented PAs.

F I G U R E 8 (A–C) Scatter plots of (A) NPA, (B) phase contrast (PC), and (C) magnitude contrasts (MgC) differences between motion
correction (MC) and NoMC images versus the mean motion score in the MC-NoMC pairs. (D–F) Scatter plots of (D) NPA, (E) PC, and (F)
MgC differences between images with and without data replacement versus the percent of replaced data in the DR pairs. The red lines are
least square fits. The Spearman’s correlation coefficients and associated p values (without Bonferroni correction) are also given.
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2098 MOORE et al.

T A B L E 2 Penetrating artery (PA) parameters averaged over the images in the motion correction (MC)-NoMC pairs (columns 1 and 2)
with similar motion and data replacement (DR) pairs (columns 4 and 5). The numbers in the parentheses are standard deviations. Columns
3 and 6 give the p values (number of pairs) of Wilcoxon’s signed tests comparing the parameters between the two groups to their left. No
motion score threshold was applied in reconstructing images in the DR pairs. Note that the number of MC-NoMC pairs for phase contrast
(PC) and magnitude contrasts (MgC) is one less than for NPA because there was no matched PA cluster in one of the pairs.

MC vs. NoMC Data replacement

MC No MC p value (n) Replacement No replacement p value (n)

NPA 29.3 (9.0) 28.6 (13.5) 0.68 (28) 31.9 (14.8) 32.5 (14.8) 0.088 (75)

PC (deg) 18.9 (3.6) 18.3 (2.6) 0.65 (27) 18.9 (2.6) 18.5 (2.5) 0.0003 (75)

MgC 0.36 (0.07) 0.33 (0.04) 0.0022 (27) 0.35 (0.06) 0.34 (0.07) 0.56 (75)

occurring, we set the zeroth moments of the gradients in
the FatNav module to be constant and no extra artifact was
observed in the PC-MRI image as shown in Figure 6. One
the other hand, the FatNav module consists of a balanced
steady-state free precession sequence. The addition of the
PC-MRI module violates the balanced gradient condition.
In addition, residual water signal that was not completed
spoiled might be detected during FatNav readout. As a
result, the FatNav images from PC-MRI showed increased
artifact level within the brain compared to those in the
TSE sequence (see Figure 2B). The artifacts may have con-
tributed to the systematic bias in motion parameters, since
they were absent in the reference FatNav image from the
TSE scans.

We found that MC increased NPA, PC, and MgC only
when the motion score is above 0.5–0.8 mm and the
increases were larger at higher motion score. This find-
ing is consistent with the expectation that MC would not
improve image quality when there is no or little motion
because of the limited accuracy of motion parameter esti-
mates. Instead, MC might be detrimental to image quality
in such cases since the errors in motion parameter esti-
mates can introduce additional noise into the images,
consistent with the observed negative changes in the PA
parameters. In addition, the limited temporal resolution of
FatNav and the bias in the estimated motion parameters
can negatively affect the motion parameter accuracy and
thus image quality.

We found that data reacquisition increased PC but
had no significant effect on NPA and MgC. The reason
for the differential effects on PC and MgC is unknown.
However, the lack of significant improvement on NPA sug-
gests that reacquisition did not improve the visualization
of PAs, which might be attributed to the following rea-
sons. First, in contrast to the correction of deliberate large
motions in previous studies,20,26 our study focused on
real-life scanning conditions in which subjects were not
asked to make deliberate large head movements, but to
keep as still as possible. After applying prospective MC,
decent image qualities were obtained in most cases even

without data reacquisition, leaving less room for further
improvement with data reacquisition. Second, due to the
relative long TR to acquire the complete k-space data for
each FatNav image, fast head motion may not be detected.
Third, although approximately 10%–90% data blocks were
replaced by reacquired data using our criteria, some of
them may not truly represent data with more motion due
to the intrinsic measurement errors in MT and MR and the
small scores of the true motion. To reduce the fraction of
data replaced simply because of measurement errors in MT
and MR but no actual motion, we applied stricter criteria
for data replacement as specified in Section 2.4.1. How-
ever, significant improvements were still not observed for
NPA and MgC.

There are several proposed causes of SVD. One in par-
ticular is the occlusion of PAs which can result in a lacunar
infarct downstream of the occlusion. On PC MRI images,
occluded arteries without blood flow will not appear on
the scan. Fewer identified arteries in our segmentations
could be an indicator of potential diseased PAs. Longitu-
dinal studies could assess how factors such as cholesterol
level, blood pressure, or blood glucose levels affect the
blood flow through PAs. Furthermore, observing whether
blood flow improves or worsens with therapeutic interven-
tions could be useful for developing effective prevention
and treatment strategies for SVD.

Our study has several limitations. First, due to dif-
ferent sequence parameters for FatNav between T2w and
PC MRI scans, there existed a systematic error in the
motion parameters. In the future, more accurate image
registration algorithm should be developed. Second, due
to the relative long TR and reconstruction time of Fat-
Nav, only gradual motion can be corrected. Faster motion
detection approaches such as those based on free induc-
tion decay signal should be explored in future devel-
opment,31,32 which may enable further improvement in
image quality by reacquiring data corrupted by acci-
dental rapid head motion. However, physiological brain
motion, such as those due to respiration and cardiac pul-
sation, still cannot be corrected, which will cause residual
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blurring of PAs and reduction of NPA. Furthermore, sliding
window or pseudo-random compressed sensing acquisi-
tion/reconstruction of FatNav data should also be explored
for increasing the temporal resolution of motion param-
eter measurement.33,34 Third, we only characterized the
motion using motion score while the type of motion and
the k-space location at which motion took place were
ignored which were also important factors of image qual-
ity. The motion score thresholds of 0.5–0.8 mm might
change in subjects with different motion characteristics.

5 CONCLUSIONS

We have developed a prospective MC method for PC MRI
which improved the contrast and count of segmented
PAs in centrum semiovale at 7 T when motion score is
above 0.5–0.8 mm. Furthermore, we have improved the
overall performance of PA segmentation using CNN-based
approaches. The improved PA imaging and segmentation
methods may help illuminate the mechanisms of patho-
physiological changes of PAs in SVD.
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Appendix S1: Supporting Information
Figure S1: The flow diagram of the types of scans per-
formed on different subjects. The first number next to each
text box gives the number of repetitions of each scan type,
while the number in the parenthesis is the total number of
subjects undergoing such scans.
Figure S2: Motion parameter traces during the (A) NoMC
and (B) MC scans in Figure 7, showing similar degrees
of motion during the MC and NoMC scans. Different
colors represent different motion directions or rotation
axes.

Figure S3: The temporal relationship between the
PC-MRI data blocks and FatNav acquisitions. The curly
brackets denote the time periods during which motion
will affect the given motion parameters or Di.
Figure S4: The architecture of the 3D U-NET for brain
tissue segmentation. The numbers above the rectangles
specify the dimensionality of the output space, while the
numbers above the pink arrows specify the dropout rate of
the Dropout layer.
Table S1: MRI parameters for the TSE, PC, and FatNav
sequences. In the PC sequence, VENC = 4 cm/s and a
one-sided flow encoding were employed, thereby the flow
encoding gradient was turned on and off alternatingly in
different TRs.
Table S2: Mean (standard deviation) and range of motion
scores in MC-NoMC pairs with similar, less, and more
motion during MC. The third column gives p values (num-
ber of samples) from Wilcoxon’s signed rank tests compar-
ing the motion scores.
Table S3: Mean changes in PA parameters after data
replacements. The different columns correspond to apply-
ing different threshold requirements for Tmax (units: mm)
and Rmax (units: deg) as described in Section 2.4.1. The
numbers in the parentheses in the first and remaining
rows are the total number of images and the standard devi-
ations, respectively. The third number in each entry of
rows 3–5 is the Spearman’s correlation coefficient between
the change and the fraction of replaced data. An aster-
isk denotes significant difference from 0 or significant
correlation after Bonferroni correction.
Table S4: PA parameters averaged over the images in the
MC-NoMC pairs with less (columns 1 and 2) or more
(columns 4 and 5) motion during the MC scan. The num-
bers in the parenthesis are standard deviations. Columns
3 and 6 give the p values (number of pairs) of Wilcoxon’s
signed tests comparing the parameters between the two
groups to their left. Note that the number of MC-NoMC
pairs for PC and MgC might be less than for NPA because
there were no matched PA clusters in some of the pairs.
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